Algebraic Methods- Mark Scheme

June 2019 Mathematics Advanced Paper 1: Pure Mathematics 1

1.

General points for marking question 10 (i):

- Students who just try random numbers in part (i) are not going to score any marks.
- Students can mix and match methods. Eg you may see odd numbers via logic and even via algebra
- Students who state $4m^2 + 2$ cannot be divided by (instead of is not divisible by) cannot be awarded credit for the accuracy/explanation marks, unless they state correctly that $4m^2 + 2$ cannot be divided by 4 to give an integer.
- Students who write $n^2 + 2 = 4k \implies k = \frac{1}{4}n^2 + \frac{1}{2}$ which is not a whole number gains no credit unless

they then start to look at odd and even numbers for instance

- Proofs via induction usually tend to go nowhere unless they proceed as in the main scheme
- Watch for unusual methods that are worthy of credit (See below)
- If the final conclusion is $n \in \mathbb{R}$ then the final mark is withheld. $n \in \mathbb{Z}^+$ is correct

Watch for methods that may not be in the scheme that you feel may deserve credit.

If you are uncertain of a method please refer these up to your team leader.

Eg 1. Solving part (i) by modulo arithmetic.

All $n \in \mathbb{N} \mod 4$	0	1	2	3
All $n^2 \in \mathbb{N} \mod 4$	0	1	0	1
All $n^2 + 2 \in \mathbb{N} \mod 4$	2	3	2	3

Hence for all n, $n^2 + 2$ is not divisible by 4.

Question 10 (i)	Scheme	Marks	AOs
-----------------	--------	-------	-----

Notes: Note that M0 A0 M1 A1 and M0 A0 M1 A0 are not possible due to the way the scheme is set up (i)

M1: Awarded for setting up the proof for either the even or odd numbers.

A1: Concludes correctly with a reason why $n^2 + 2$ cannot be divisible by 4 for either n odd or even.

dM1: Awarded for setting up the proof for both even and odd numbers

A1: Fully correct proof with valid explanation and conclusion for all n

Example of an algebraic proof

For $n = 2m$, $n^2 + 2 = 4m^2 + 2$	M1	2.1
Concludes that this number is not divisible by 4 (as the explanation is trivial)	Al	1.1b
For $n = 2m+1$, $n^2 + 2 = (2m+1)^2 + 2 =$ FYI $(4m^2 + 4m + 3)$	dM1	2.1
Correct working and concludes that this is a number in the 4 times table add 3 so cannot be divisible by 4 or writes $4(m^2 + m) + 3$ AND stateshence true for all		2.4
	(4)	

Example of a very similar algebraic proof

For $n = 2m$, $\frac{4m^2 + 2}{4} = m^2 + \frac{1}{2}$	M1	2.1
Concludes that this is not divisible by 4 due to the $\frac{1}{2}$ (A suitable reason is required)	A1	1.1b
For $n = 2m + 1$, $\frac{n^2 + 2}{4} = \frac{4m^2 + 4m + 3}{4} = m^2 + m + \frac{3}{4}$	dM1	2.1
Concludes that this is not divisible by 4 due to the $\frac{3}{4}$ AND states hence for all n , $n^2 + 2$ is not divisible by 4	Al*	2.4
	(4)	

Example of a proof via logic

When <i>n</i> is odd, "odd \times odd" = odd	M1	2.1
so $n^2 + 2$ is odd, so (when <i>n</i> is odd) $n^2 + 2$ cannot be divisible by 4	Al	1.1b
When <i>n</i> is even, it is a multiple of 2, so "even \times even" is a multiple of 4	dM1	2.1
Concludes that when <i>n</i> is even $n^2 + 2$ cannot be divisible by 4 because n^2 is divisible by 4AND STATEStrues for all <i>n</i> .	Al*	2.4
	(4)	

Example of proof via contradiction

Sets up the contradiction 'Assume that $n^2 + 2$ is divisible by $4 \implies n^2 + 2 = 4k$ '	M1	2.1
$\Rightarrow n^2 = 4k - 2 = 2(2k - 1) \text{ and concludes even}$		
Note that the M mark (for setting up the contradiction must have been awarded)	A1	1.1b
States that n^2 is even, then <i>n</i> is even and hence n^2 is a multiple of 4	dM1	2.1
Explains that if n^2 is a multiple of 4 then $n^2 + 2$ cannot be a multiple of 4 and hence divisible by 4 Hence there is a contradiction and concludes Hence true for all n .	A1*	2.4
	(4)	

A similar proof exists via contradiction where A1: $n^2 = 2(2k-1) \Longrightarrow n = \sqrt{2} \times \sqrt{2k-1}$

dM1: States that 2k-1 is odd, so does not have a factor of 2, meaning that n is irrational

	Question 10 (ii)	Scheme	Marks	AOs
--	------------------	--------	-------	-----

(ii)

M1: States or implies 'sometimes true' or 'not always true' and gives an example where it is not true. A1: and gives an example where it is true,

Proof using numerical values

SOMETIMES TRUE and chooses any number $x: 9.25 < x < 9.5$ and shows false Eg $x = 9.4$ $ 3x-28 = 0.2$ and $x-9 = 0.4$ ×	M1	2.3
Then chooses a number where it is true Eg $x = 12$ $ 3x - 28 = 8$ $x - 9 = 3$ \checkmark	A1	2.4
	(2)	

Graphical Proof

 States or implies "sometimes true" Sketches both graphs on the same axes. Expect shapes and relative positions to be correct. V shape on +ve x -axis Linear graph with +ve gradient intersecting twice 	M1	2.3	
--	----	-----	--

Graphs accurate and explains that as there are points where $ 3x-28 < x-9$ and points where $ 3x-28 > x-9$ oe in words like 'above' and 'below' or	Al	2.4
'dips below at one point'		
	(2)	

Proof via algebra

States sometimes true and attempts to solve both $3x-28 < x-9$ and $-3x+28 < x-9$ or one of these with the bound 9.3	M1	2.3
States that it is false when $9.25 < x < 9.5$ or $9.25 < x < 9.3$ or $9.3 < x < 9.5$		2.4
	(2)	

Alt: It is possible to find where it is always true

States sometimes true and attempts to solve where it is just true Solves both $3x-28 \ge x-9$ and $-3x+28 \ge x-9$	M1	2.3
States that it is false when $9.25 < x < 9.5$ or $9.25 < x < 9.3$ or $9.3 < x < 9.5$	A1	2.4
	(2)	

Question	Scheme	Marks	AOs
11 (a)	Attempts $f(4) = 2 \times 4^3 - 13 \times 4^2 + 8 \times 4 + 48$	M1	1.16
	$f(4) = 0 \Longrightarrow (x-4)$ is a factor	A1	1.11
		(2)	
(b)	$2x^{3} - 13x^{2} + 8x + 48 = (x - 4)(2x^{2} \dots x - 12)$	M1	2.1
	$=(x-4)(2x^2-5x-12)$	A1	1.1
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1
	$f(x) = (x-4)^{2} (2x+3) \Longrightarrow f(x) = 0$ has only two roots, 4 and -1.5	A1	2.4
		(4)	
(c)	Deduces either three roots or deduces that $f(x)$ is moved down two units	M1	2.2
	States three roots, as when $f(x)$ is moved down two units there will be three points of intersection (with the <i>x</i> - axis)	A1	2.4
		(2)	
(d)	For sight of $k = \pm 4, \pm \frac{3}{2}$	M1	1.1
	For sight of $k = \pm 4, \pm \frac{3}{2}$ $k = 4, -\frac{3}{2}$	A1ft	1.1
		(2)	
		(10	mark

May 2019 Mathematics Advanced Paper 1: Pure Mathematics 1

2.

M1: Attempts to calculate f(4).

Do not accept f(4) = 0 without sight of embedded values or calculations. If values are not embedded look for two correct terms from f(4) = 128 - 208 + 32 + 48Alternatively attempts to divide by (x-4). Accept via long division or inspection. See below for awarding these marks.

A1: Correct reason with conclusion. Accept f(4) = 0, hence factor as long as M1 has been scored.

This should really be stated on one line after having performed a correct calculation. It could appear as a preamble if the candidate states "If f(4) = 0, then (x-4) is a factor before doing the calculation and then writing hence proven or \checkmark oe.

If division/inspection is attempted it must be correct and there must be some attempt to explain why they have shown that (x-4) is a factor. Eg Via division they must state that there is no remainder, hence factor

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)

So for inspection award for $2x^3 - 13x^2 + 8x + 48 = (x-4)(2x^2...x \pm 12)$

$$\frac{2x^2 - 5x}{x - 4)2x^3 - 13x^2 + 8x + 48}$$

For division look for $\frac{2x^3 - 8x^2}{-5x^2}$

A1: Correct quadratic factor $(2x^2 - 5x - 12)$ For division award for sight of this "in the correct place" You don't have to see it paired with the (x-4) for this mark. If a student has used division in part (a) they can score the M1 A1 in (b) as soon as

they start attempting to factorise their $(2x^2-5x-12)$.

dM1: Correct attempt to solve or factorise their $(2x^2-5x-12)$ including use of formula Apply the usual rules $(2x^2-5x-12)=(ax+b)(cx+d)$ where $ac=\pm 2$ and $bd=\pm 12$

Allow the candidate to move from $(x-4)(2x^2-5x-12)$ to $(x-4)^2(2x+3)$ for this mark.

A1: Via factorisation

Factorises twice to f(x) = (x-4)(2x+3)(x-4) or $f(x) = (x-4)^2(2x+3)$ or

 $f(x) = 2(x-4)^2\left(x+\frac{3}{2}\right)$ followed by a valid explanation why there are only two roots.

The explanation can be as simple as

- hence x = 4 and $-\frac{3}{2}$ (only). The roots must be correct
- only two distinct roots as 4 is a repeated root

There must be some understanding between roots and factors.

(b)

E.g.
$$f(x) = (x-4)^2 (2x+3)$$

only two distinct roots is insufficient.

This would require two distinct factors, so there are two distinct roots.

Via solving.

Factorsises to
$$(x-4)(2x^2-5x-12)$$
 and solves $2x^2-5x-12=0 \Rightarrow x=4, -\frac{3}{2}$ followed

by an explanation that the roots are $4, 4, -\frac{3}{2}$ so only two distinct roots.

Note that this question asks the candidate to use algebra so you cannot accept any attempt to use their calculators to produce the answers.

- (c)
- M1: For a valid deduction.

Accept either there are 3 roots or states that it is a solution of f(x) = 2 or f(x) - 2 = 0

A1: Fully explains:

Eg. States three roots, as f(x) is moved down by **two** units (giving three points of intermediate of the states of the states

intersection with the x - axis)

Eg. States three roots, as it is where f(x) = 2 (You may see y = 2 drawn on the diagram) (d)

M1: For sight of ± 4 and $\pm \frac{3}{2}$ Follow through on \pm their roots.

A1ft:
$$k = 4, -\frac{3}{2}$$
 Follow through on their roots. Accept $4, -\frac{3}{2}$ but not $x = 4, -\frac{3}{2}$

3.

Score as below so M0 A0 M1 A1 or M1 A0 M1 A1 are not possible

Generally the marks are awarded for

M1: Suitable approach to answer the question for *n* being even **OR** odd

A1: Acceptable proof for *n* being even **OR** odd

M1: Suitable approach to answer the question for n being even AND odd

A1: Acceptable proof for n being even AND odd WITH concluding statement.

There is no merit in a

- student taking values, or multiple values, of n and then drawing conclusions.
 So n = 5 ⇒ n³ + 2 = 127 which is not a multiple of 8 scores no marks.
- student using divided when they mean divisible. Eg. "Odd numbers cannot be divided by 8" is incorrect. We need to see either "odd numbers are not divisible by 8" or "odd numbers cannot be divided by 8 exactly"
- stating $\frac{n^3+2}{8} = \frac{1}{8}n^3 + \frac{1}{4}$ which is not a whole number

• stating $\frac{(n+1)^3+2}{8} = \frac{1}{8}n^3 + \frac{3}{8}n^2 + \frac{3}{8}n + \frac{3}{8}$ which is not a whole number

There must be an attempt to generalise either logic or algebra.

Example of a logical approach

Logical approach	States that if <i>n</i> is odd, n^3 is odd	M1	2.1
	so $n^3 + 2$ is odd and therefore cannot be divisible by 8	A1	2.2a
	States that if <i>n</i> is even, n^3 is a multiple of 8	M1	2.1
	so $n^3 + 2$ cannot be a multiple of 8 So (Given $n \in \mathbb{N}$), $n^3 + 2$ is not divisible by 8	A1	2.2a
		(4)	
		·	4 marks

First M1: States the result of cubing an odd or an even number

First A1: Followed by the result of adding two and gives a valid reason why it is not divisible by 8. So for odd numbers accept for example

"odd number + 2 is still odd and odd numbers are not divisible by 8"

" $n^3 + 2$ is odd and cannot be divided by 8 exactly"

and for even numbers accept

"a multiple of 8 add 2 is not a multiple of 8, so $n^3 + 2$ is not divisible by 8"

"if n^3 is a multiple of 8 then $n^3 + 2$ cannot be divisible by 8

Second M1: States the result of cubing an odd and an even number

Second A1: Both valid reasons must be given followed by a concluding statement.

Example of algebraic approaches

Question	Scheme	Marks	AOs
15 Algebraic	(If <i>n</i> is even,) $n = 2k$ and $n^3 + 2 = (2k)^3 + 2 = 8k^3 + 2$	M1	2.1
approach	Eg. 'This is 2 more than a multiple of 8, hence not divisible by 8' Or 'as $8k^3$ is divisible by 8, $8k^3 + 2$ isn't'	A1	2.2a
	(If <i>n</i> is odd,) $n = 2k+1$ and $n^3 + 2 = (2k+1)^3 + 2$	M1	2.1
	$= \frac{8k^3 + 12k^2 + 6k + 3}{m}$ which is an even number add 3, therefore odd. Hence it is not divisible by 8 So (given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8	A1	2.2a
		(4)	

Alt algebraic approach	(If <i>n</i> is even,) $n = 2k$ and $\frac{n^3 + 2}{8} = \frac{(2k)^3 + 2}{8} = \frac{8k^3 + 2}{8}$	M1	2.1
	$=k^3 + \frac{1}{4}$ oe which is not a whole number and hence not divisible by 8	A1	2.2a
	(If <i>n</i> is odd,) $n = 2k+1$ and $\frac{n^3+2}{8} = \frac{(2k+1)^3+2}{8}$	M1	2.1
	$=\frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8	A1	2.2a
		(4)	

Correct expressions are required for the M's. There is no need to state "If *n* is even," n = 2k and "If *n* is odd, n = 2k + 1" for the two M's as the expressions encompass all numbers. However the concluding statement must attempt to show that it has been proven for all $n \in \mathbb{N}$

Some students will use 2k-1 for odd numbers

There is no requirement to change the variable. They may use 2n and $2n\pm 1$

Reasons must be correct. Don't accept $8k^3 + 2$ cannot be divided by 8 for example. (It can!)

Also **'' = $\frac{8k^3 + 12k^2 + 6k + 3}{8} = k^3 + \frac{3}{2}k^2 + \frac{3}{4}k + \frac{3}{8}$ which is not whole number'' is too vague so A0

May 2018 Mathematics Advanced Paper 1: Pure Mathematics 1

$(g(-2)) = 4 \times -8 - 12 \times 4 - 15 \times -2 + 50$	M1	1.1b
$g(-2) = 0 \Rightarrow (x+2)$ is a factor	Al	2.4
	(2)	
$4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 20x + 25)$	M1 A1	1.1b 1.1b
$=(x+2)(2x-5)^2$	M1 A1	1.1b 1.1b
	(4)	
(i) $x \le -2, x = 2.5$	M1 A1ft	1.1b 1.1b
(ii) $x = -1, x = 1.25$	Blft	2.2a
	(3)	
	g(-2) = 0 \Rightarrow (x+2) is a factor $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 20x + 25)$ $= (x+2)(2x-5)^2$ (i) $x \leq -2, x = 2.5$	$g(-2) = 0 \Rightarrow (x+2)$ is a factor A1 (2) (2) $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 20x + 25)$ M1 $= (x+2)(2x-5)^2$ M1 $= (x+2)(2x-5)^2$ M1 (4) (4) (i) $x \le -2, x = 2.5$ M1 (ii) $x = -1, x = 1.25$ B1ft

(a)

M1: Attempts g(-2) Some sight of (-2) embedded or calculation is required.

So expect to see $4 \times (-2)^3 - 12 \times (-2)^2 - 15 \times (-2) + 50$ embedded

Any attempt to divide or factorise is M0. (See demand in question)

A1: $g(-2) = 0 \Rightarrow (x+2)$ is a factor.

Requires a correct statement and conclusion. Both "g(-2) = 0 " and "(x+2) is a factor" must be seen in the solution. This may be seen in a preamble before finding g(-2) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc. (b)

M1: Attempts to divide g(x) by (x+2) May be seen and awarded from part (a)

If inspection is used expect to see $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 15x) \pm 25$

If algebraic / long division is used expect to see $\frac{4x^2 \pm 20x}{x+2 \sqrt{4x^3 - 12x^2 - 15x + 50}}$

A1: Correct quadratic factor is $(4x^2 - 20x + 25)$ may be seen and awarded from part (a)

M1: Attempts to factorise their $(4x^2 - 20x + 25)$ usual rule $(ax + b)(cx + d), ac = \pm 4, bd = \pm 25$

A1: $(x+2)(2x-5)^2$ or seen on a single line. $(x+2)(-2x+5)^2$ is also correct.

Allow recovery for all marks for $g(x) = (x+2)(x-2.5)^2 = (x+2)(2x-5)^2$

(c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \le -2$ or x = 2.5 Follow through on their $g(x) = (x+2)(ax+b)^2$ only where ab < 0 (that is a positive root). Condone x < -2 See SC below for $g(x) = (x+2)(2x+5)^2$

A1ft: BOTH $x \le -2$, x = 2.5 Follow through on their $-\frac{b}{a}$ of their $g(x) = (x+2)(ax+b)^2$

May see $\{x \leq -2 \cup x = 2.5\}$ which is fine.

(c) (ii)

B1ft: For deducing that the solutions of g(2x) = 0 will be where x = -1 and x = 1.25

Condone the coordinates appearing (-1,0) and (1.25,0)

Follow through on their 1.25 of their $g(x) = (x+2)(ax+b)^2$

SC: If a candidate reaches $g(x) = (x+2)(2x+5)^2$, clearly incorrect because of Figure 2, we will award In (i) M1 A0 for $x \le -2$ or x < -2

In (ii) B1 for x = -1 and x = -1.25

Or -32-48+30+50 condoning slips for the M1

Alt (b)	$4x^3 - 12x^2 - 15x + 50 = (x+2)(ax+b)^2$		
	$=a^{2}x^{3}+(2ba+2a^{2})x^{2}+(b^{2}+4ab)x+2b^{2}$		
	Compares terms to get either a or b	M1	1.1b
	Either $a = 2$ or $b = -5$	Al	1.1b
	Multiplies out expression $(x+2)(\pm 2x\pm 5)^2$ and compares to $4x^3-12x^2-15x+50$	M1	
	All terms must be compared or else expression must be multiplied out and establishes that $4x^3 - 12x^2 - 15x + 50 = (x+2)(2x-5)^2$	A1	1.1b
		(4)	

May 2017 Mathematics Advanced Paper 1: Pure Mathematics 2

5	
-	••

Question Number	Scheme	Marks
6. (a)	Attempt $f(3)$ or $f(-3)$ Use of long division is M0A0 as factor theorem was required.	M1
	f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor	A1
		(2)
(b)	Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$	M1A1
	=(x+3)(-3x+7)(2x+1) or $-(x+3)(3x-7)(2x+1)$	M1A1
		(4)
	Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$	M1
	Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$	A1
	Puts three factors together (see notes below)	M1
	Correct factorisation : $(x + 3)(7 - 3x)(2x + 1)$ or $-(x + 3)(3x - 7)(2x + 1)$ oe	A1 (4)
	Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working	M1A1M1A1 (4)
(c)	$2^{y} = \frac{7}{3}, \rightarrow \log(2^{y}) = \log(\frac{7}{3}) \text{ or } y = \log_{2}(\frac{7}{3}) \text{ or } \frac{\log(7/3)}{\log 2}$	B1, M1
	$\{y=1.222392421\} \Rightarrow y = awrt 1.22$	Al
		(3)

	Notes
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers substituted into expression
	A1 for calculating $f(-3)$ correctly to 0, and they must state $(x + 3)$ is a factor for A1 (or equivalent ie.
(b)	QED, \Box or a tick). A conclusion may be implied by a preamble, "if $f(-3) = 0$, $(x+3)$ is a factor". -6(-3) ³ -7(-3) ² + 40(-3) + 21 = 0 so $(x + 3)$ is a factor of $f(x)$ is M1A1 providing bracketing is correct. 1 st M1: attempting to divide by $(x + 3)$ leading to a 3TQ beginning with the correct term, usually $-6x^2$.
	This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. Allow for work in part (a) if the result is used in (b).
	1 st A1: usually for $(-6x^2 + 11x + 7)$ Credit when seen and use isw if miscopied
	2 nd M1: for a <i>valid</i> * attempt to factorise their quadratic (* see notes on page 6 - General Principles for Core Mathematics Marking section 1)
	2^{nd} A1 is cao and needs all three factors together fully factorised. Accept e.g. $-3(x + 3)(x - \frac{7}{3})(2x + 1)$
	but $(x + 3)(x - \frac{7}{3})(-6x - 3)$ and $(x + 3)(3x - 7)(-2x - 1)$ are A0 as not fully factorised.
	Ignore subsequent work (such as a solution to a quadratic equation.) Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equivalent where
	they obtained α and β by trial, so if correct roots identified, then $(x+3)(3x-7)(2x+1)$ can gain M1A1M1A0.
	N.B. Replacing $(-6x^2 + 11x + 7)$ (already awarded M1A1) by $(6x^2 - 11x - 7)$ giving
	(x+3)(3x-7)(2x+1) can have M1A0 for factorization so M1A1M1A0
(c)	B1: $2^y = \frac{7}{3}$
	M1: Attempt to take logs to solve $2^y = \alpha$ or $2^y = 1/\alpha$, where $\alpha > 0$ and α was a root of their factorization.
	A1: for an answer that rounds to 1.22. If other answers are included (and not "rejected") such as $ln(-3)$ or -1 lose final A mark
	Special case: Those who deal throughout with $f(x) = 6x^3 + 7x^2 - 40x - 21$
	They may have full credit in part (a). In part (b) they can achieve a maximum of M1A0M1A0 unless they return the negative sign to give the correct answer. This is then full marks. Part (c) is fine. So they could lose 2 marks on the factorisation. (Like a misread)

May 2016 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks
4.	$f(x) = 6x^3 + 13x^2 - 4$	
(a)	$f\left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$	M1
		5 A1 cao
	$f(-2) = f(-2)^3 + 12(-2)^2 - 4$ Attempts $f(-2)$.	12
(b)	$f(-2) = 6(-2)^3 + 13(-2)^2 - 4$ = 0, and so (x + 2) is a factor. f(-2) = 0 with no sign or substitution errors and for conclusion	IAI
(c)	$f(x) = \{(x+2)\}(6x^2 + x - 2)$	M1 A1
	= (x+2)(2x-1)(3x+2)	M1 A1
	Question 4 Notes	
	Note Long division scores no marks in part (a). The <u>remainder theorem</u> is required.	
(a)	M1 Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$. $6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4$ or $6\left(\frac{3}{2}\right)^3 + 13\left(\frac{3}{2}\right)^2 - 4$ is	sufficient
	A1 5 cao	

(b)	M1	Attempting $f(-2)$. (This is not given for $f(2)$)
	A1	Must correctly show $f(-2) = 0$ and give a conclusion <i>in part (b) only</i> . No simplification of terms
	Note	is required here. Stating "hence factor" or "it is a factor" or a "tick" or "QED" are possible conclusions. Also a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$, $(x + 2)$ is a factor" Long division scores no marks in part (b). The <u>factor theorem</u> is required.
(c)	1 st M1	Attempting to divide by $(x + 2)$ leading to a quotient which is quadratic with at least two terms beginning with first term of $\pm 6x^2 + \text{linear or constant term.}$
		Or $f(x) = (x + 2)(\pm 6x^2 + \text{linear and/or constant term})$ (This may be seen in part (b) where candidates did not use factor theorem and might be referred to here)
	1 st A1	$(6x^2 + x - 2)$ seen as quotient or as factor. If there is an error in the division resulting in a remainder give A0, but allow recovery to gain next two marks if $(6x^2 + x - 2)$ is used
	2 nd M1 A1	For a <i>valid</i> attempt to factorise their three term quadratic. (x + 2)(2x - 1)(3x + 2) and needs all three factors on the same line.
	Special cases	Ignore subsequent work (such as a solution to a quadratic equation). Calculator methods: Award M1A1M1A1 for correct answer $(x + 2)(2x - 1)(3x + 2)$ with no working. Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ or $(x + 2)(2x + 1)(3x - 2)$ or (x + 2)(2x - 1)(2x - 2) with no working.
		(x + 2)(2x - 1)(3x - 2) with no working. (At least one bracket incorrect) Award M1A1M1A1 for $x = -2$, $\frac{1}{2}$, $-\frac{2}{3}$ followed by $(x + 2)(2x - 1)(3x + 2)$.
		Award M0A0M0A0 for a candidate who writes down $x = -2, \frac{1}{2}, -\frac{2}{3}$ giving no factors.
		Award M1A1M1A1 for $6(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ or $2(x + 2)(x - \frac{1}{2})(3x + 2)$ or equivalent
		Award SC: M1A0M1A0 for $x = -2, \frac{1}{2}, -\frac{2}{3}$ followed by $(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$.

May 2015 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks
3.	$f(x) = 6x^3 + 3x^2 + Ax + B$	
Way 1 (a)	Attempting $f(1) = 45$ or $f(-1) = 45$	M1
	$f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \implies B - A = 48*$ (allow $48 = B - A$)	A1 * cso
		(2)
Way 1 (b)	Attempting $f(-\frac{1}{2}) = 0$	M1
	$6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$	A1 o.e.
	Solve to obtain $B = -48$ and $A = -96$	M1 A1 (4)
Way 2 (a)	Long Division $(6x^3 + 3x^2 + Ax + B) \div (x \pm 1) = 6x^2 + px + q$ and sets remainder = 45	M1
	Quotient is $6x^2 - 3x + (A+3)$ and remainder is $B - A - 3 = 45$ so $B - A = 48$ *	A1*
Way 2 (b)	$(6x^3 + 3x^2 + Ax + B) \div (2x + 1) = 3x^2 + px + q$ and sets remainder = 0	M1
	Quotient is $3x^2 + \frac{A}{2}$ and remainder is $B - \frac{A}{2} = 0$	Al
	Then Solve to obtain $B = -48$ and $A = -96$ as in scheme above (Way 1)	M1 A1

(c)	Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6}) \text{ or } (x^2 + \frac{B}{3})$ as	Blft
	factor or as quotient after division by $(2x + 1)$. Division by $(x+4)$ or $(x-4)$ see below	
	Factorises $(3x^2-48), (x^2-16), (48-3x^2), (16-x^2) \text{ or } (6x^2-96)$	M1
	= 3 $(2x + 1)(x + 4)(x - 4)$ (if this answer follows from a wrong A or B then award A0) isw if they go on to solve to give $x = 4$, -4 and -1/2	A1cso (3) [9]
	Notes	
Way 2:	 M1: 1 or -1 substituted into f(x) and expression put equal to ±45 A1*: Answer is given. Must have substituted -1 and put expression equal to +45. Correct equation with powers of -1 evaluated and conclusion with no errors seen. M1: Long division as far as a remainder which is set equal to ±45 A1*: See correct quotient and correct remainder and printed answer obtained with no errors M1: Must see f(-¹/₂) and "= 0" unless subsequent work implies this. 	i
	 A1: Give credit for a correct equation even unsimplified when first seen, then isw. A correct equation implies M1A1. M1: Attempts to solve the given equation from part (a) and their simplified or unsimplified equation in A and B from part (b) as far as A = or B =(must eliminate one of the coalgebra need not be correct for this mark). May just write down the correct answers. A1: Both A and B correct 	
-	 M1: Long division as far as a remainder which is set equal to 0 A1: See correct quotient and correct remainder put equal to 0 M1A1: As in Way 1 may be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa. 	
	y be written straight down or from long division, inspection, comparing coefficients or pairi	ng terms
M1: Va	lid attempt to factorise a listed quadratic (see general notes) so $(3x-16)(x+3)$ could get M	41A0
	Cannot be awarded if A or B is wrong) Needs the answer in the scheme or $-3(2x+1)(4+x)(4)$ equivalent but factor 3 must be shown and there must be all the terms together with brackets	
Way 2: J	A minority might divide by $(x-4)$ or $(x+4)$ obtaining $(6x^2+27x+12)$ or $(6x^2-21x-12)$	for B1
1	They then need to factorise $(6x^2 + 27x + 12)$ or $(6x^2 - 21x - 12)$ for M1	
Special case If they write	then A1cso as before es: e down $f(x) = 3 (2x+1)(x+4)(x-4)$ with no working, this is B1 M1 A1 give $f(x) = (2x+1)(x+4)(x-4)$ with no working (from calculator?) give B1M0A0	

But if they give f(x) = (2x+1)(x+4)(x-4) with no working (from calculator?) give B1M0A0 And f(x) = (2x+1)(3x+12)(x-4) or f(x) = (6x+3)(x+4)(x-4) or f(x) = (2x+1)(x+4)(3x-12) is B1M1A0

May 2014 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Sch	eme	Marks
	If there is no labelling, ma	rk (a) and (b) in that order	
	$f(x) = 2x^3 - $	$7x^2 + 4x + 4$	
	$f(2) = 2(2)^{3} - 7(2)^{2} + 4(2) + 4$	Attempts f(2) or f(-2)	M1
2. (a)	= 0, and so $(x - 2)$ is a factor. Note: Long division scores no marks in	f(2) = 0 with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(2) = 0$, $(x - 2)$ is a factor" part (a). The factor theorem is required.	A1
	Note: Long division scores no marks m	part (a). The <u>ractor meorem</u> is required.	[2]
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x - 2)$ or other method using $(x - 2)$, to obtain $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	M1 A1
(b)	$= (x - 2)(x - 2)(2x + 1) \operatorname{or} (x - 2)^{2}(2x + 1)$ or equivalent e.g. $= 2(x - 2)(x - 2)(x + \frac{1}{2})\operatorname{or} 2(x - 2)^{2}(x + \frac{1}{2})$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors. A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)	d M1 A1
	Note = $(x-2)(\frac{1}{2}x-1)(4x+2)$ would los	se the last mark as it is not fully factorised	
		y award full marks in (b)	
			[4]
			Total 6

May 2013 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme		
3. (a)	Either (Way 1) : Attempt f(3) or f(-3)	Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$	M1
	$f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9 *$	· · · · · · · · ·	A1 * cso (2
	Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px + 18$	+q where p is a number and q	M1
	is an expression in terms of <i>a</i> Sets the remainder $18+3a+9=0$ and solves to give <i>a</i>	= -9	A1* cso (2)
(b)	Either (Way 1): $f(x) = (x - 3)(2x^2 + x - 6)$ = $(x - 3)(2x - 3)(x + 2)$		MIA1 MIA1 (4
	Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ d Uses trial or factor theorem to obtain both $x = -2$ and $x = -2$ Puts three factors together (see notes below) Correct factorisation : $(x - 3)(2x - 3)(x + 2)$ or $(3 - x)(3 - 2(x - 3)(x - \frac{3}{2})(x + 2))$ oe	3/2	M1 A1 M1 A1 (4
	Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)($	+ 2) otherwise need working	MIAIMIAI
(c)	$\{3^y = 3 \implies\} \underline{y=1}$ or $g(1) = 0$		B1
	$\{3^{y} = 1.5 \Rightarrow \}\log(3^{y}) = \log 1.5 \text{ or } y = \log_3 1.5$		M1
	$\{y = 0.3690702\} \Rightarrow y = awrt 0.37$		A1 (3)
	Notes for Ques		•
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers	_	
	A1 for applying $f(3)$ correctly, setting the result equal to 0, and manipulating this correctly to give the		
(b)	result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1 st M1: attempting to divide by $(x - 3)$ leading to a 3TQ	ision they must state $(x-3)$ is a factorized for $(x-3)$	tor for A1
	(Could divide by $(3 - x)$, in which case the quadratic word of methods including long division, comparison of coeffic 1 st A1: usually for $2x^2 + x - 6$ Credit when seen and 2 nd M1: for a <i>valid</i> * attempt to factorise their quadratic (*	Id begin - $2x^2$.) This may be done being in the second	by a variety
	Core Mathematics Marking section 1) 2^{nd} A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic NB: $(x - 3)(x - \frac{3}{2})(x + 2)$ is M1A1M0A0, $(x - 3)(x - \frac{3}{2})$	equation.)	
	$2(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M1A1.		(1) T
(c)	B1: $y = 1$ seen as a solution – may be spotted as answer – no working needed. Allow also for $g(1) = 0$.		
	M1: Attempt to take logs to solve $3^y = \alpha$ or even $3^{ky} = \alpha$, buroot of $f(x) = 0$ (ft their factorization) A1: for an answer that rounds to 0.37. If a third answer is lose final A mark		

Jan 2013 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme		Marks
2.	f(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	A	241
(a)	1(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	Attempt $f(\pm 1)$ Must be $f(1)$ and $= 0$ needs to be	M1
	a + b = 7 *	seen	A1
			(2
(b)	$f(-2) = a(-2)^{3} + b(-2)^{2} - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1
	(-8a + 4b = 4)		
	Solves the given equation from part (a)		MI
	and their equation in a and b from part (b) as far as $a = -arb $		M1
	(b) as far as $a =$ or $b =$ a = 2 and $b = 5$	Both correct	A1
	Attempts at trial and improvement in (b		
	values for a and b where $a + b = 7$ and su		
	along with $x = \pm 2$ and sets = 9. For complete		
	to be correct allow 4/4. For incomplete of		
	M1 only. If in doubt consult your team le	eader.	
			(4
			[6
	Long Divis		
	$(ax^3 + bx^2 - 4x - 3) \div (x - 3)$	$-1) = ax^2 + px + q$	
	where p and q are in terms		
(a)			M1
	and sets their remainder =		
	NB Quotient = $ax^2 + (a + a + b = 7)$	(b)x+(a+b-4)	
	a + b = 7	*	A1
			(2
	$(ax^3 + bx^2 - 4x - 3) \div (x + 2)$	$2) = ax^2 + px + q$	
	where p and q are in terms of	f a or hor both	
(b)	and sets their remainder = 9		M1
	NB Quotient = $ax^2 + (b-2)$	(2a)x + (4a - 4 - 2b)	
	4b-8a+5		A1
	Follow scheme for f	final 2 marks	
	1		

May 2012 Mathematics Advanced Paper 1: Pure Mathematics 2

Question number	Scheme	Marks
4 (a)	$f(-2) = 2.(-2)^{3} - 7.(-2)^{2} - 10.(-2) + 24$ = 0 so (x+2) is a factor	M1 A1
(b)	$f(x) = (x+2)(2x^2 - 11x + 12)$	(2) M1 A1
	f(x) = (x+2)(2x-3)(x-4)	dM1 A1 (4) 6 marks
Notes (a)	M1 : Attempts $f(\pm 2)$ (Long division is M0)	
(b)	A1 : is for =0 and conclusion Note: Stating "hence factor" or "it is a factor" or a " $$ " (tick) or "QED" is fine for conclusion. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$, (factor" (Not just $f(-2)=0$) 1 st M1: Attempts long division by correct factor or other method leading to obta ($2x^2 \pm ax \pm b$), $a \neq 0$, $b \neq 0$, even with a remainder. Working need not be seen done "by inspection." Or <i>Alternative Method</i> : 1 st M1: Use $(x+2)(ax^2 + bx + c) = 2x^3 - 7x^2 - 10x + 2^3$ expansion and comparison of coefficients to obtain $a = 2$ and to obtain values for 1 st A1: For seeing $(2x^2 - 11x + 12)$. [Can be seen here in (b) after work done in 2 nd M1: Factorises quadratic. (see rule for factorising a quadratic). This is dependent previous method mark being awarded and needs factors 2 nd A1: is cao and needs all three factors together. Ignore subsequent work (such to a quadratic equation.)	(x + 2) is a ining as could be 24 with t b and c (a)] endent on the
	Note: Some candidates will go from $\{(x+2)\}(2x^2 - 11x + 12)$ to $\{x = -2\}$, $x = 1$ list all three factors. Award these responses M1A1M0A0. Finds $x = 4$ and $x = 1.5$ by factor theorem, formula or calculator and produces factors.	_
	f(x) = (x+2)(2x-3)(x-4) or $f(x) = 2(x+2)(x-1.5)(x-4)$ o.e. is full m f(x) = (x+2)(x-1.5)(x-4) loses last A1	

Jan 2012 Mathematics Advanced Paper 1: Pure Mathematics 2

Question number	Scheme	Marks
5 (a)	f(-2) = -8 + 4a - 2b + 3 = 7	M1
	so $2a - b = 6$ *	A1 (2)
(b)	f(1) = 1 + a + b + 3 = 4	M1 A1
	Solve two linear equations to give $a = 2$ and $b = -2$	M1 A1 (4)
		6
Notes	 (a) M1 : Attempts f(±2) = 7 or attempts long division as far as putting remainder (There may be sign slips) A1 is for correct equation with remainder = 7 and for the printed answer with and no wrong working between the two (b) M1 : Attempts f(±1) = 4 or attempts long division as far as putting remainder A1 is for correct equation with remainder = 4 and powers calculated correctly M1 : Solving simultaneous equations (may be implied by correct answers). The awarded for attempts at elimination or substitution leading to values for both are penalised in the accuracy mark. A1 is cao for values of <i>a</i> and <i>b</i> and explicit values are needed. Special case: Misreads and puts remainder as 7 again in (b). This may earn M1A part (b) and will result in a maximum mark of 4/6 	th no errors er equal to 4 y This mark may a and b. Errors 0M1A0 in
Long Divisions	$\begin{array}{c} x^{2} + (a-2)x + (b-2a+4) \\ (x+2) \hline x^{3} + ax^{2} + bx + 3 \\ x^{3} + 2x^{2} \end{array} \text{and reach their "3 - 2b + 4a -} \\ \end{array}$	8" = 7 M1
	$(x-1)) \xrightarrow{x^2 + (a+1)x + (b+a+1)}_{x^3 + ax^2 + bx + 3}$ and reach their "3 + b + a + 1" = x^3 - x^2	4 M1
	A marks as before	

May 2011 Mathematics Advanced Paper 1: Pure Mathematics 2

1	2	
	.3	
_		2

Question Number	Schem	e	Marks
1. (a)	$f(x) = 2x^{3} - 7x^{2} - 5x + 4$ Remainder = f(1) = 2 - 7 - 5 + 4 = -6 = -6	Attempts $f(1)$ or $f(-1)$. - 6	M1 A1 [2
(b)	$f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$ and so $(x + 1)$ is a factor.	Attempts $f(-1)$. f(-1) = 0 with no sign or substitution errors and for conclusion .	M1 A1 [2
(c)	$f(x) = \{(x+1)\}(2x^2 - 9x + 4) = (x+1)(2x-1)(x-4) (Note: Ignore the ePEN notation of (b) (should be$	(c)) for the final three marks in this part).	M1 A1 dM1 A [4
(a)	M1 for <i>attempting</i> either $f(1)$ or $f(-1)$. Can be in M1 can also be given for an attempt (at least two "s remainder which is independent of x. A1 can be gi working. Award A0 for a candidate who finds -6 Award M1A1 for -6 without any working.	subtracting" processes) at long division to give ven also for -6 seen at the bottom of long div	a
(b)	M1: attempting only $f(-1)$. A1: must correctly show $f(-1) = 0$ and give a conclusion <i>in part (b) only</i> . Note: Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-1) = 0$, $(x + 1)$ is a factor" Note: Long division scores no marks in part (b). The <u>factor theorem</u> is required.		
	1 st M1: Attempts long division or other method, to Working need not be seen as this could be done "by <i>only</i> . Award 1 st M0 if the quadratic factor is clearly candidates use their $(2x^2 - 5x - 10)$ in part (c) four 1 st A1: For seeing $(2x^2 - 9x + 4)$. 2 nd dM1: Factorises a 3 term quadratic. (see rule for previous method mark being awarded. This mark of quadratic formula correctly. 2 nd A1: is cao and needs all three factors on one line quadratic equation.) Note: Some candidates will go from $\{(x + 1)\}(2x^2)$ factors. Award these responses M1A1M1A0. <u>Alternative:</u> 1 st M1: For finding either f(4) = 0 1 st A1: A second correct factor of usually $(x - 4)$ of factors found would imply the 1 st M1 mark. 2 nd dM1: For using two known factors to find the to 2 nd A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$. <u>Alternative: (for the first two marks)</u> 1 st M1: Expands $(x + 1)(2x^2 + ax + b)$ {giving 2: coefficients to find <u>values</u> for <i>a</i> and <i>b</i> . 1 st A1:	y inspection." $(2x^2 \pm ax \pm b)$ must be seen in f y found from dividing $f(x)$ by $(x - 1)$. Eg. So d from applying a long division method in part or factorising a quadratic). This is dependent of can also be awarded if the candidate applies the me. Ignore following work (such as a solution to $-9x + 4$) to $\{x = -1\}, x = \frac{1}{2}, 4$, and not list a or $f(\frac{1}{2}) = 0$. or $(2x - 1)$ found. Note that any one of the oth hird factor, usually $(2x \pm 1)$.	part (c) me (a). on the co a all three
	Not dealing with a factor of 2: $(x + 1)(x - \frac{1}{2})(x - \frac{1}{2})($	(x + 1)(x - 4) or $(x + 1)(2x - 1)(x + 4)$ scores	

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks
1.	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting f(1) or f(-1). f(1) = 1 + 1 + 2 + $a + b = 7$ or 4 + $a + b = 7 \Rightarrow a + b = 3$ (as required) AG	M1 A1 * cso (2)
(b)	Attempting $f(-2)$ or $f(2)$.	M1
	$f(-2) = \underline{16 - 8 + 8 - 2a + b} = -8 \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1 cso
		(5) [7]
	Notes	•
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to give the result given on the paper as $a + b = 3$. Note that the answer is given in part (a).	
(b)	 (b) M1: attempting either f(-2) or f(2). A1: correct underlined equation in a and b; eg 16-8+8-2a+b=-8 or equivalent, eg -2a+b=-24. dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in a and Note that this mark is dependent upon the award of the first method mark. A1: any one of a = 9 or b = -6. A1: both a = 9 and b = -6 and a correct solution only. 	
	Alternative Method of Long Division: (a) M1 for long division by $(x - 1)$ to give a remainder in <i>a</i> and <i>b</i> which is independ A1 for {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answe (b) M1 for long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independ A1 for {Remainder =} $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }. Then dM1A1A1 are applied in the same way as before.	r given.)

Jun 2010 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks	
2			
	$f(3) = 3(3)^3 - 5(3)^2 - (58 \times 3) + 40 = 81 - 45 - 174 + 40 = -98$	A1	(2)
	(b) $\{3x^3 - 5x^2 - 58x + 40 = (x - 5)\}$ $(3x^2 + 10x - 8)$	M1 A1	
	Attempt to <u>factorise</u> 3-term quadratic, or to use the quadratic formula		
	(see general principles at beginning of scheme). This mark may be	M1	
	implied by the correct solutions to the quadratic.		
	$(3x-2)(x+4) = 0$ $x = \dots$ \underline{or} $x = \frac{-10 \pm \sqrt{100+96}}{6}$	A1 ft	
	$\frac{2}{3}$ (or exact equiv.), -4, 5 (Allow 'implicit' solns, e.g. $f(5) = 0$, etc.)	A1	(5)
	Completely correct solutions without working: full marks.		7
	tive (long division):	hod	
	by $(x-3)$ to get $(3x^2 + ax + b)$, $a \neq 0, b \neq 0$. [M1] 3 3 -5 -		
	4x - 46, and -98 seen. [A1] 0 9	12 -138	
-	tinues to say 'remainder = 98', isw) 3 4 -	-46 –98	
	requires use of $(x-5)$ to obtain $(3x^2 + ax + b)$, $a \neq 0, b \neq 0$. <u>Grid' met</u>		
(V	Vorking need not be seen this could be done 'by inspection'.) $3 \begin{vmatrix} 3 \\ -5 \end{vmatrix}$		
	$(3x^2 + 10x - 8) \leftarrow 0 15$	50 -40	-
and		-	
2 M 1	for the attempt to <u>factorise</u> their 3-term quadratic, or to solve it using the quadratic $(2\pi)^2$		a.
	Factorisation: $(3x^2 + ax + b) = (3x + c)(x + d)$, where $ cd =$	= D .	
A1ft: C	orrect factors for their 3-term quadratic <u>followed by a solution</u> (at least one va might be incorrect), <u>or</u> numerically correct expression from the quadratic for 3-term quadratic.		eir
W	herefore that if the quadratic is correctly factorised but no solutions are given, vill be lost.	the last 2 m	arks
	ative (first 2 marks):		
(x-5)	(3x2 + ax + b) = 3x3 + (a - 15)x2 + (b - 5a)x - 5b = 0,		
	then compare coefficients to find <u>values</u> of a and b a = 10, b = -8		11]
Altern	ative 1: (factor theorem) $a = 10, b = -8$	ĮA	.1]
	nding that $f(-4) = 0$		
A1: Sta	ating that $(x+4)$ is a factor.		
M1: Fi	nding third factor $(x-5)(x+4)(3x\pm 2)$.		
A1: Fu	lly correct factors (no ft available here) followed by a solution, (which might	be incorrect).
	l solutions correct.		
	ative 2: (direct factorisation)		
	actors $(x-5)(3x+p)(x+q)$ A1: $pq = -8$		
	$(x-5)(3x\pm 2)(x\pm 4)$		
	A marks as in Alternative 1.		
Throug	hout this scheme, allow $\left(x \pm \frac{2}{3}\right)$ as an alternative to $(3x \pm 2)$.		

Question Number	Scheme	Mar	ks
Q3 (a)	$f\left(\frac{1}{2}\right) = 2 \times \frac{1}{8} + a \times \frac{1}{4} + b \times \frac{1}{2} - 6$	M1	
	$f(\frac{1}{2}) = -5 \implies \frac{1}{4}a + \frac{1}{2}b = \frac{3}{4} \text{ or } a + 2b = 3$	A1	
	f(-2) = -16 + 4a - 2b - 6 f(-2) = 0 $\implies 4a - 2b = 22$	M1 A1	
	Eliminating one variable from 2 linear simultaneous equations in a and b a = 5 and $b = -1$	M1 A1	(6)
(b)	$2x^{3} + 5x^{2} - x - 6 = (x + 2)(2x^{2} + x - 3)$	M1	
	= (x+2)(2x+3)(x-1)	M1A1	(3)
	NB $(x+2)(x+\frac{3}{2})(2x-2)$ is A0 But $2(x+2)(x+\frac{3}{2})(x-1)$ is A1		[9]
(a)	1 st M1 for attempting $f(\pm \frac{1}{2})$ Treat the omission of the -5 here as a slip and allow		
	the M mark.		
	1^{st}A1 for first correct equation in <i>a</i> and <i>b</i> simplified to three non zero terms (needs -5 used)		
	s.c. If it is not simplified to three terms but is correct and is then used correctly with		
	second equation to give correct answers- this mark can be awarded later.		
	2^{nd} M1 for attempting f(± 2) 2^{nd} A1 for the second correct equation in <i>a</i> and <i>b</i> . simplified to three terms (needs 0)		
	used) s.c. If it is not simplified to three terms but is correct and is then used correctly with first equation to give correct answers - this mark can be awarded later. 3^{rd} M1 for an attempt to eliminate one variable from 2 linear simultaneous		
	equations in a and b $3^{rd} A1$ for both $a = 5$ and $b = -1$ (Correct answers here imply previous two A marks)		
(b)	1 st M1 for attempt to divide by (x +2) leading to a 3TQ beginning with correct term usually $2x^2$		
	2 nd M1 for attempt to factorize their quadratic provided no remainder		
	A1 is cao and needs all three factors Ignore following work (such as a solution to a quadratic equation).		
(a)	<u>Alternative;</u> M1 for dividing by (2n, 1) to get $x^2 + (a^{\pm 1})n + constant with remainder as a$		
	M1 for dividing by $(2x-1)$, to get $x^2 + (\frac{a+1}{2})x$ + constant with remainder as a		
	function of a and b , and A1 as before for equations stated in scheme . M1 for dividing by $(x+2)$, to get $2x^2 + (a-4)x$ (No need to see remainder as it is		
	zero and comparison of coefficients may be used) with A1 as before		
(b)	x_1 for modify second factor correctly by factor theorem, usually $(x - 1)$		
	M1 for using two known factors to find third factor, usually $(2x \pm 3)$		

Jun 2017 Mathematics Advanced Paper 1: Pure Mathematics 3

Question Number	Scheme	Marks
1.	$x^2 - 9 = (x + 3)(x - 3)$	B1
	$\frac{4x}{x^2 - 9} - \frac{2}{(x+3)} = \frac{4x - 2(x-3)}{(x+3)(x-3)}$	M1
	$=\frac{2x+6}{(x+3)(x-3)}$	A1
	$=\frac{2(x+3)}{(x+3)(x-3)}$	
	$=\frac{2}{(x-3)}$	Al
		(4

B1
$$x = 9 = (x + 3)(x = 3)$$
 This can occur anywhere.

M1 For combining the two fractions with a common denominator. The denominator must be correct and at least one numerator must have been adapted. Accept as separate fractions. Condone missing brackets.

For example accept
$$\frac{4x}{x^2 - 9} - \frac{2}{x + 3} = \frac{4x(x + 3) - 2(x^2 - 9)}{(x + 3)(x^2 - 9)}$$

accept separately
$$\frac{4x}{(x + 3)(x - 3)} - \frac{2}{(x + 3)} = \frac{4x}{(x + 3)(x - 3)} - \frac{2x - 3}{(x + 3)(x - 3)}$$
 condoning missing bracket
condone
$$\frac{4x}{x^2 - 9} - \frac{2}{x + 3} = \frac{4x(x + 3) - 2}{(x + 3)(x^2 - 9)}$$
.....as only one numerator has been adapted
A correct intermediate form of $\frac{\text{simplified linear}}{\text{simplified quadratic}}$

Accept
$$\frac{2x+6}{(x+3)(x-3)}$$
, $\frac{2x+6}{x^2-9}$, and even $\frac{(2x+6)(x+3)}{(x^2-9)(x+3)}$,

Further factorises and cancels (which may be implied) to reach the answer $\frac{2}{x-3}$ A1

Do not penalise correct solutions that include incomplete lines Eg $\frac{4x-2(x-3)}{(x+3)(x-3)} = \frac{4x-2x+6}{...} = \frac{2x+6}{(x+3)(x-3)} = \frac{2}{x-3}$

This is not a "show that" question.

A1

Note: Watch out for an answer of $\frac{2}{x+3}$ probably scored from $\frac{4x-2(x-3)}{(x+3)(x-3)} = \frac{2x-6}{(x+3)(x-3)} = \frac{2(x-3)}{(x+3)(x-3)}$

This would score B1 M1 A0 A0

1	Q	
т	o	٠

Question Number	Scheme	Marks
1.	$9x^2 - 4 = (3x - 2)(3x + 2)$ At any stage	B1
	Eliminating the common factor of $(3x+2)$ at any stage $\frac{2(3x+2)}{(3x-2)(3x+2)} = \frac{2}{3x-2}$ Use of a common denominator	В1
	$\frac{2(3x+2)(3x+1)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)} \text{ or } \frac{2(3x+1)}{(3x-2)(3x+1)} - \frac{2(3x-2)}{(3x+1)(3x-2)}$	M1
	$\frac{6}{(3x-2)(3x+1)}$ or $\frac{6}{9x^2-3x-2}$	A1
		(4 marks)

Notes

A1

B1 For factorising $9x^2 - 4 = (3x - 2)(3x + 2)$ using difference of two squares. It can be awarded at any stage of the answer but it must be scored on E pen as the first mark

- B1 For eliminating/cancelling out a factor of (3x+2) at any stage of the answer.
- M1 For combining two fractions to form a single fraction with a common denominator. Allow slips on the numerator but at least one must have been adapted. Condone invisible brackets. Accept two separate fractions with the same denominator as shown in the mark scheme. Amongst possible (incorrect) options scoring method marks are

$$\frac{2(3x+2)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)}$$
 Only one numerator adapted, separate fractions

$$\frac{2\times 3x+1-2\times 3x-2}{(3x-2)(3x+1)}$$
 Invisible brackets, single fraction

$$\frac{6}{(3x-2)(3x+1)}$$

This is not a given answer so you can allow recovery from 'invisible' brackets.

Alternative method

$$\frac{2(3x+2)}{(9x^2-4)} - \frac{2}{(3x+1)} = \frac{2(3x+2)(3x+1) - 2(9x^2-4)}{(9x^2-4)(3x+1)} = \frac{18x+12}{(9x^2-4)(3x+1)} \text{ has scored } 0,0,1,0 \text{ so far}$$
$$= \frac{6(3x+2)}{(3x+2)(3x-2)(3x+1)} \text{ is now } 1,1,1,0$$
$$= \frac{6}{(3x-2)(3x+1)} \text{ and now } 1,1,1,1$$

Question Number	Scheme		Marks	
2. (a)	$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$			
	$= \frac{(4x-1)(2x-1)-3}{2(x-1)(2x-1)}$	An attempt to form a single fraction	M1	
	$= \frac{8x^2 - 6x - 2}{\{2(x-1)(2x-1)\}}$	Simplifies to give a correct quadratic numerator over a correct quadratic denominator	A1 aef	
	$= \frac{2(x-1)(4x+1)}{\{2(x-1)(2x-1)\}}$	An attempt to factorise a 3 term quadratic numerator	M1	
	$= \frac{4x+1}{2x-1}$		A1	
(b)	$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, x > 1$			
	$f(x) = \frac{(4x+1)}{(2x-1)} - 2$			
	$= \frac{(4x+1) - 2(2x-1)}{(2x-1)}$	An attempt to form a single fraction	M1	
	$=\frac{4x+1-4x+2}{(2x-1)}$			
	$=\frac{3}{(2x-1)}$	Correct result	A1 *	
(c)	$f(x) = \frac{3}{(2x-1)} = 3(2x-1)^{-1}$			
	$f'(x) = 3(-1)(2x - 1)^{-2}(2)$	$\pm k(2x-1)^{-2}$	M1	
			M1 A1 aef A1	
	$f'(2) = \frac{-6}{9} = -\frac{2}{3}$	Either $\frac{-6}{9}$ or $-\frac{2}{3}$	A1	

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 3

Marks	Scheme		Question Number
		$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$ $= \frac{x+1}{3(x^2-1)} - \frac{1}{3x+1}$	Q1
Award below	$x^2 - 1 \rightarrow (x + 1)(x - 1)$ or $3x^2 - 3 \rightarrow (x + 1)(3x - 3)$ or $3x^2 - 3 \rightarrow (3x + 3)(x - 1)$ seen or implied anywhere in candidate's working.	$=\frac{x+1}{3(x+1)(x-1)}-\frac{1}{3x+1}$	
		$= \frac{1}{3(x-1)} - \frac{1}{3x+1}$	
M1	Attempt to combine.	$=\frac{3x+1-3(x-1)}{3(x-1)(3x+1)}$	
A1	Correct result.	or $\frac{3x+1}{3(x-1)(3x+1)} - \frac{3(x-1)}{3(x-1)(3x+1)}$	
M1	Decide to award M1 here!!		
	Either $\frac{4}{3(x-1)(3x+1)}$ or $\frac{\frac{4}{3}}{(x-1)(3x+1)}$ or $\frac{4}{(3x-3)(3x+1)}$ or $\frac{4}{9x^2-6x-3}$	$=\frac{4}{3(x-1)(3x+1)}$	
[4			

Jan 2010 Mathematics Advanced Paper 1: Pure Mathematics 3